Ultrasound Echogenicity-based Assessment of Muscle Fatigue During Functional Electrical Stimulation

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov:2021:5948-5952. doi: 10.1109/EMBC46164.2021.9630325.

Abstract

The rapid onset of muscle fatigue during functional electrical stimulation (FES) is a major challenge when attempting to perform long-term periodic tasks such as walking. Surface electromyography (sEMG) is frequently used to detect muscle fatigue for both volitional and FES-evoked muscle contraction. However, sEMG contamination from both FES stimulation artifacts and residual M-wave signals requires sophisticated processing to get clean signals and evaluate the muscle fatigue level. The objective of this paper is to investigate the feasibility of computationally efficient ultrasound (US) echogenicity as a candidate indicator of FES-induced muscle fatigue. We conducted isometric and dynamic ankle dorsiflexion experiments with electrically stimulated tibialis anterior (TA) muscle on three human participants. During a fatigue protocol, we synchronously recorded isometric dorsiflexion force, dynamic dorsiflexion angle, US images, and stimulation intensity. The temporal US echogenicity from US images was calculated based on a gray-scaled analysis to assess the decrease in dorsiflexion force or motion range due to FES-induced TA muscle fatigue. The results showed a monotonic reduction in US echogenicity change along with the fatigue progression for both isometric (R2 =0.870±0.026) and dynamic (R2 =0.803±0.048) ankle dorsiflexion. These results implied a strong linear relationship between US echogenicity and TA muscle fatigue level. The findings indicate that US echogenicity may be a promising computationally efficient indicator for assessing FES-induced muscle fatigue and may aid in the design of muscle-in-the-loop FES controllers that consider the onset of muscle fatigue.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electric Stimulation
  • Electromyography
  • Humans
  • Isometric Contraction*
  • Muscle Fatigue*
  • Ultrasonography