Boosting Continuous-Wave Laser-Driven Nonlinear Photothermal White Light Generation by Nanoscale Porosity

Adv Mater. 2022 Mar;34(11):e2106368. doi: 10.1002/adma.202106368. Epub 2022 Feb 3.

Abstract

The irradiation of an optically absorptive medium by a continuous-wave (CW) near-infrared (NIR) laser can result in a spectral continuum emission covering both the visible and NIR regions, which is attractive for applications as continuum light sources in diverse fields. It is shown here that this NIR-laser-driven light emission can be effectively modulated with nanoscale architecture in the medium. By using porous silica as the model matrix and Yb3+ ions as the photothermally active centers, up to 100 folds increment in NIR-laser-induced emission intensity and dramatic decrease in threshold excitation density are demonstrated. It is observed that the emission intensity exhibits a strong nonlinear dependence on the power of the NIR excitation laser, featuring clear excitation power thresholds. Based on combined numerical simulation and spectral and temperature measurements, the improved broadband emission and photothermal nonlinearity are interpreted by enhanced optical energy localization around the laser spot that results in boosting the photon-to-photon conversion efficiency. The use of the nonlinear photothermal emission process as a broadband NIR light source, which could be exploited for applications including NIR spectroscopy, imaging, and sensing, is further demonstrated as a proof-of-concept.

Keywords: broadband light emission; nanoscale porous silica; near-infrared lasers; photothermal nonlinearity.