Fungal cellulases: protein engineering and post-translational modifications

Appl Microbiol Biotechnol. 2022 Jan;106(1):1-24. doi: 10.1007/s00253-021-11723-y. Epub 2021 Dec 10.

Abstract

Enzymatic degradation of lignocelluloses into fermentable sugars to produce biofuels and other biomaterials is critical for environmentally sustainable development and energy resource supply. However, there are problems in enzymatic cellulose hydrolysis, such as the complex cellulase composition, low degradation efficiency, high production cost, and post-translational modifications (PTMs), all of which are closely related to specific characteristics of cellulases that remain unclear. These problems hinder the practical application of cellulases. Due to the rapid development of computer technology in recent years, computer-aided protein engineering is being widely used, which also brings new opportunities for the development of cellulases. Especially in recent years, a large number of studies have reported on the application of computer-aided protein engineering in the development of cellulases; however, these articles have not been systematically reviewed. This article focused on the aspect of protein engineering and PTMs of fungal cellulases. In this manuscript, the latest literatures and the distribution of potential sites of cellulases for engineering have been systematically summarized, which provide reference for further improvement of cellulase properties. KEY POINTS: •Rational design based on virtual mutagenesis can improve cellulase properties. •Modifying protein side chains and glycans helps obtain superior cellulases. •N-terminal glutamine-pyroglutamate conversion stabilizes fungal cellulases.

Keywords: Cellulases; Lignocellulose; Post-translational modifications; Protein engineering.

Publication types

  • Review

MeSH terms

  • Biofuels
  • Cellulase*
  • Cellulases* / genetics
  • Cellulases* / metabolism
  • Protein Engineering
  • Protein Processing, Post-Translational

Substances

  • Biofuels
  • Cellulases
  • Cellulase