Multiplexed Molecular Imaging Strategy Integrated with RNA Sequencing in the Assessment of the Therapeutic Effect of Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoporosis

Int J Nanomedicine. 2021 Nov 30:16:7813-7830. doi: 10.2147/IJN.S335757. eCollection 2021.

Abstract

Introduction: Osteoporosis is a result of an imbalance in bone remodeling. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been considered as a potentially promising treatment for osteoporosis. However, the therapeutic effect, genetic alterations, and in vivo behavior of exogenous EVs for osteoporosis in mice models remain poorly understood.

Methods: A multiplexed molecular imaging strategy was constructed by micro-positron emission tomography (µPET)/computed tomography (CT), µCT, and optical imaging modality which reflected the osteoblastic activity, microstructure, and in vivo behavior of EVs, respectively. RNA sequencing was used to analyze the cargo of EVs, and the bone tissues of ovariectomized (OVX) mice post EV treatment.

Results: The result of [18F]NaF µPET showed an increase in osteoblastic activity in the distal femur of EV-treated mice, and the bone structural parameters derived from µCT were also improved. In terms of in vivo behavior of exogenous EVs, fluorescent dye-labeled EVs could target the distal femur of mice, whereas the uptakes of bone tissues were not significantly different between OVX mice and healthy mice. RNA sequencing demonstrated upregulation of ECM-related genes, which might associate with the PI3K/AKT signaling pathway, in line with the results of microRNA analysis showing that mir-21, mir-29, mir-221, and let-7a were enriched in Wharton's jelly-MSC-EVs and correlated to the BMP and PI3K/AKT signaling pathways.

Conclusion: The therapeutic effect of exogenous WJ-MSC-EVs in the treatment of osteoporosis was successfully assessed by a multiplexed molecular imaging strategy. The RNA sequencing demonstrated the possible molecular targets in the regulation of bone remodeling. The results highlight the novelty of diagnostic and therapeutic strategies of EV-based treatment for osteoporosis.

Keywords: RNA sequencing; Wharton’s jelly mesenchymal stem cells; [18F]NaF; extracellular vesicles; osteoporosis.

MeSH terms

  • Animals
  • Extracellular Vesicles*
  • Mesenchymal Stem Cells*
  • Mice
  • MicroRNAs*
  • Molecular Imaging
  • Osteoporosis* / diagnostic imaging
  • Osteoporosis* / therapy
  • Phosphatidylinositol 3-Kinases
  • Sequence Analysis, RNA
  • Wharton Jelly*

Substances

  • MIRN29 microRNA, mouse
  • MicroRNAs

Grants and funding

This work was financially supported by Ministry of Science and Technology, Taiwan (MOST 110-2314-B-350-002) and Molecular and Genetic Imaging Center, National Yang Ming Chiao Tung University and Taiwan Animal Consortium (MOST 110‐2740‐B‐001‐002), and Kaohsiung Medical University Research Foundation (KMU-DK110005 and KMU-M11010).