Modeling the impact of temperature on the population abundance of the ambrosia beetle Xyleborus affinis (Curculionidae: Scolytinae) under laboratory-reared conditions

J Therm Biol. 2021 Oct:101:103001. doi: 10.1016/j.jtherbio.2021.103001. Epub 2021 May 21.

Abstract

Modeling the impact of temperature on each life stage of a beetle population represents a continuing challenge. This study evaluates the effects of five temperature treatments (20, 23, 26, 29 and 32 °C) on population abundance and timing of a colony of ambrosia beetles Xyleborus affinis reared under laboratory conditions and use this data to develop demographic and phenological models. Abundances at each life stage (eggs, larvae, pupae and adult) were examined through periodic destructive sampling; given that it was not possible to track individuals. To assess the effects of temperature on oviposition, development and survival rates we developed a novel estimation strategy based on cohorts, which does not require individual developmental data. Since oviposition was entirely unwitnessed, we assessed competing empirical ovipositional models. Rates of development were computed using a modal rate curve for each life stage, and rates were projected to cohorts in life stages assuming log-normal developmental variance. Temperature-driven survival rates were assumed to be logistic with a quadratic exponent to capture modal temperature dependence. Parameters were estimated simultaneously using minimum negative log posterior likelihood, assuming Poisson distribution of observations and using priors to inform unobserved developmental rates and enforce mechanistic constraints on oviposition models. A parabolic function best described oviposition rate. Optimal developmental temperatures were 30.5 °C, 29 °C and 27.5 °C, with maximum developmental rates of 0.26/day, 0.12/day and 0.23/day for eggs, larvae and pupae, respectively. The survival rates in the range 20-29 °C were equal to 1 in the eggs-to-larvae transition, from 0.72 to 0.35 in larvae-to-pupae transition, and from 0.2 to 0.89 in pupae-to-adults transition. This procedure effectively characterized the direct thermal effects on development and survival of each life stage in the X. affinis under laboratory conditions and would be suitable for estimating temperature dependence for other species in which individual observations are not possible.

Keywords: Developmental rate; Insects; Ovipositional model; Phenology; Survival rate.

MeSH terms

  • Animals
  • Coleoptera* / growth & development
  • Coleoptera* / physiology
  • Female
  • Laboratories
  • Life Cycle Stages
  • Models, Theoretical*
  • Oviposition
  • Population Density
  • Temperature*