Inactivation of antibiotic resistant bacteria and their resistance genes in sewage by applying pulsed electric fields

J Hazard Mater. 2022 Feb 15;424(Pt A):127382. doi: 10.1016/j.jhazmat.2021.127382. Epub 2021 Sep 30.

Abstract

We evaluated the suitability of pulsed electric field (PEF) technology as a new disinfection option in the sewage treatment plants (STPs) that can inactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). It was shown that PEF applied disinfection could inactivate not only vancomycin-resistant enterococci (VRE), but also vanA resistance gene. Cultivable VRE could be effectively inactivated by PEF applied disinfection, and were reduced to below the detection limit (log reduction value of VRE > 5 log). Although the vanA also showed a reduction of more than 4 log, it remained in the order of 105 copies/mL, suggesting that ARGs are more difficult to be inactivated than ARB in PEF applied disinfection. Among parameters in each applying condition verified in this study, the initial voltage was found to be the most important for inactivation of ARB and ARGs. Furthermore, frequency was a parameter that affects the increase or decrease of the duration time, and it was suggested that the treatment time could be shortened by increasing the frequency. Our results strongly suggested that PEF applied disinfection may be a new disinfection technology option for STPs that contributes to the control of ARB and ARGs contamination in the aquatic environments.

Keywords: Disinfection; Pulse power; Sewage treatment plants; Vancomycin resistant enterococci; vanA resistance gene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin Receptor Antagonists*
  • Angiotensin-Converting Enzyme Inhibitors
  • Anti-Bacterial Agents / pharmacology
  • Bacteria / genetics
  • Genes, Bacterial
  • Sewage*
  • Wastewater

Substances

  • Angiotensin Receptor Antagonists
  • Angiotensin-Converting Enzyme Inhibitors
  • Anti-Bacterial Agents
  • Sewage
  • Waste Water