Solution-processed whispering-gallery-mode microsphere lasers based on colloidal CsPbBr3perovskite nanocrystals

Nanotechnology. 2021 Dec 23;33(11). doi: 10.1088/1361-6528/ac4131.

Abstract

Perovskite nanocrystals (NCs) have emerged as attractive gain materials for solution-processed microlasers. Despite the recent surge of reports in this field, it is still challenging to develop low-cost perovskite NC-based microlasers with high performance. Herein, we demonstrate low-threshold, spectrally tunable lasing from ensembles of CsPbBr3NCs deposited on silica microspheres. Multiple whispering-gallery-mode lasing is achieved from individual NC/microspheres with a low threshold of ∼3.1μJ cm-2and cavity quality factor of ∼1193. Through time-resolved photoluminescence measurements, electron-hole plasma recombination is elucidated as the lasing mechanism. By tuning the microsphere diameter, the desirable single-mode lasing is successfully achieved. Remarkably, the CsPbBr3NCs display durable room-temperature lasing under ∼107shots of pulsed laser excitation, substantially exceeding the stability of conventional colloidal NCs. These CsPbBr3NC-based microlasers can be potentially useful in photonic applications.

Keywords: CsPbBr3 perovskite nanocrystals; low-threshold; microlasers; single-mode lasing; whispering-gallery-mode.