Spin Polarization-Assisted Dopant Segregation at a Coherent Phase Boundary

ACS Nano. 2021 Dec 28;15(12):19938-19944. doi: 10.1021/acsnano.1c07449. Epub 2021 Dec 8.

Abstract

Coherent phase boundaries are widely expected as segregation-free boundaries due to their low interfacial energies and lack of trapping sites for impurities. Here, we report an equilibrium segregation of W atoms at fully coherent terraces of a Fe3O4 (111)/Fe2O3 (0001) phase boundary that was never expected previously. Through comparison of pristine and W-doped Fe3O4/Fe2O3 phase boundaries, it is revealed that the spin polarization of O atoms at the interface plays an important role in the periodic segregation of W atoms. Unusual spin-polarized O atoms with large magnetic moments are periodically arranged in the interfacial O plane of the pristine phase boundary. After doping of W at this boundary, W atoms will selectively substitute the Fe atoms of Fe2O3 that directly bond with three spin-polarized O atoms, thereby resulting in the complete neutralization of the magnetic moments of the spin-polarized O atoms. These findings reveal that coherent phase boundaries are able to trap impurities and local spin polarization is one of the driving forces for dopant segregation, suggesting that elemental doping is an efficient way for tailoring the physical properties of boundaries in magnetic materials and devices.

Keywords: atomic and electronic structures; phase boundary; segregation; spin polarization; transmission electron microscopy.