Aliidiomarina indica sp. nov., isolated from deep seawater

Int J Syst Evol Microbiol. 2021 Dec;71(12). doi: 10.1099/ijsem.0.005122.

Abstract

A Gram-stain-negative, rod-shaped bacterial strain, designated SW123T, was isolated from a deep-sea water sample collected from the Indian Ocean. Strain SW123T was strictly aerobic, catalase- and oxidase-positive. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0 and summed feature 9 (comprising C16 : 0-methyl or iso-C17 : 1 ω9c). Ubiquinone-8 was the sole respiratory quinone. The major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The genomic DNA G+C content was 49.4 mol%. 16S rRNA gene sequence analysis showed that strain SW123T was closely related to Aliidiomarina shirensis AIST (96.7 % sequence similarity), Aliidiomarina iranensis GBPy7T (96.3%), Aliidiomarina haloalkalitolerans AK5T (96.0%) and Aliidiomarina celeris F3105T (95.9%). Phylogenetic trees based on 16S rRNA gene sequences showed that strain SW123T represented a novel member of the genus Aliidiomarina, forming a distinct cluster with A. celeris F3105T. On the basis of phylogenetic inference and phenotypic characteristics, we propose that strain SW123T represents a novel species of the genus Aliidiomarina, with the name Aliidiomarina indica sp. nov. The type strain is SW123T (=CGMCC1.16169T=KCTC 82234T).

Keywords: Aliidiomarina indica; deep seawater; phylogenetic analysis.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Gammaproteobacteria / classification*
  • Gammaproteobacteria / isolation & purification
  • Indian Ocean
  • Phospholipids / chemistry
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Seawater / microbiology*
  • Sequence Analysis, DNA

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S