Genetic parameters controlling the inheritance of glaucousness and yield traits in bread wheat

Braz J Biol. 2021 Dec 3:82:e253864. doi: 10.1590/1519-6984.253864. eCollection 2021.

Abstract

Wheat breeders frequently use generation mean analysis to obtain information on the type of gene action involved in inheriting a trait to choose the helpful breeding procedure for trait improvement. The present study was carried out to study the inter-allelic and intra-allelic gene action and inheritance of glaucousness, earliness and yield traits in a bread wheat cross between divergent parents in glaucousness and yield traits; namely Mut-2 (P1) and Sakha 93 (P2). The experimental material included six populations, i.e. P1, P2, F1, F2, BC1, and BC2 for this wheat cross. A randomized complete block design with three replications was used, and a six parameters model was applied. Additive effects were generally more critical than dominance for all studied traits, except for plant height (PH) and grain yield/plant (GYPP). The duplicate epistasis was observed in spike length; SL, spikes/plant; SPP and days to heading; DTH. All six types of allelic and non-allelic interaction effects controlled SL, GYPP, DTH and glaucousness. All three types of epistasis, i.e. additive x additive, additive x dominance, and dominance x dominance, are essential in determining the inheritance of four traits (SL, GYPP, DTH and glaucousness). Dominance × dominance effects were higher in magnitude than additive × dominance and additive × additive in most traits. The average degree of dominance was minor than unity in six traits (glaucousness, grains/spike, spike weight, days to maturity, 100-grain weight and SL), indicating partial dominance and selection for these traits might be more effective in early generations. Meanwhile, the remaining traits (PH, SPP, GYPP and DTH) had a degree of dominance more than unity, indicating that overdominance gene effects control such traits and it is preferable to postpone selection to later generations. The highest values of narrow-sense heritability and genetic advance were recorded by glaucousness trait followed by SL and SPP, indicating that selection in segregating generations would be more effective than other traits.

MeSH terms

  • Bread*
  • Crosses, Genetic
  • Phenotype
  • Triticum* / genetics