SWAT model application for evaluating agricultural conservation practice effectiveness in reducing phosphorous loss from the Western Lake Erie Basin

J Environ Manage. 2022 Jan 15;302(Pt A):114000. doi: 10.1016/j.jenvman.2021.114000. Epub 2021 Nov 10.

Abstract

Lake Erie is threatened by eutrophication and harmful algal blooms due to excess nutrient loading from agricultural sources. Agricultural conservation practices (ACPs) have been developed and implemented to reduce nutrient losses but estimating ACP effectiveness is challenging. The Soil and Water Assessment Tool (SWAT) has been used to investigate ACP effectiveness for water quality improvement. Many SWAT applications have been developed by different investigators to evaluate ACP effectiveness for reducing nutrient, particularly phosphorus (P), loading in the agriculturally-dominated Western Lake Erie Basin (WLEB). Our objective is to establish what has been achieved by past modeling research and make suggestions for future applications and improvements. We synthesized the findings of 28 SWAT modeling studies within the WLEB. Models generally performed satisfactorily against accepted criteria for streamflow and sediment, but performance for P loads, like soluble reactive P, was mostly "unsatisfactory". The "unsatisfactory" performance maybe due to imperfections and idealizations in model formulations and/or parameterization. Thus, simulations of P transport and transformation processes need improvement. In addition, model parameter selection is the key part of model set-up. Most SWAT modeling studies used default values during initial set-up, then performed calibration and validation. It was found that the calibrated P related parameter values varied widely across different studies, even within the same watershed with some values unrealistic for the study areas. The phenomena of different combinations of model parameters producing similar outputs indicates equifinality. Equifinality in the baseline model may impact results when ACPs are incorporated. Furthermore, the unrealistic values used in ACP assessment undermine the credibility of ACP effectiveness. Future model applications should try to re-examine the calibrated P parameters and make sure they are realistic for the study area as well as reduce equifinality by constraining the model with characterization of watershed conditions, better understanding of hydrologic processes, and parameter values based on real-world observations. In summary, future model applications should focus on improving P transport and transformation processes, using measured watershed characteristics for parameterization, and improving reflections of climate change, which could result in more accurate assessments of ACP effectiveness to meet targeted goals.

Keywords: Agricultural conservation practice; Effectiveness evaluation; Phosphorous loss simulation; Phosphorous parameters; SWAT; WLEB.

Publication types

  • Review

MeSH terms

  • Environmental Monitoring
  • Harmful Algal Bloom
  • Lakes*
  • Phosphorus / analysis
  • Soil*

Substances

  • Soil
  • Phosphorus