Preclinical evaluation of strasseriolides A-D, potent antiplasmodial macrolides isolated from Strasseria geniculata CF-247,251

Malar J. 2021 Dec 5;20(1):457. doi: 10.1186/s12936-021-03993-8.

Abstract

Background: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A-D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development.

Methods: Preclinical evaluation of strasseriolides A-D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC-MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4-5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS® Lumina II imager.

Results: Strasseriolides A-D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle.

Conclusions: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A-D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.

Keywords: Cardiotoxicity; Drug development; Drug–drug interaction; In vivo efficacy; Macrolides; Malaria; Metabolic stability; Natural products; Pharmacokinetics; Preclinical evaluation.

MeSH terms

  • Animals
  • Antimalarials* / chemistry
  • Antimalarials* / pharmacology
  • Antimalarials* / toxicity
  • Ascomycota / chemistry*
  • Drug Evaluation, Preclinical
  • Female
  • Macrolides* / chemistry
  • Macrolides* / pharmacology
  • Macrolides* / toxicity
  • Malaria / drug therapy*
  • Mice
  • Plasmodium berghei / drug effects*

Substances

  • Antimalarials
  • Macrolides

Supplementary concepts

  • Strasseria geniculata