Electrochemical biosensor for serogroup specific diagnosis of leptospirosis

Bioelectrochemistry. 2022 Apr:144:108005. doi: 10.1016/j.bioelechem.2021.108005. Epub 2021 Nov 25.

Abstract

A problem with the current leptospirosis diagnostic methods is the low sensitivity and specificity during the acute phase of illness. Rapid point-of-care (POC) assays with minimal sample utilization and low cost are desired in clinical practice. Here, we report for the first time lipopolysaccharide (LPS) based electrochemical biosensor that offers a rapid, highly sensitive, serogroup specific diagnosis of leptospirosis during the acute stage of infection and also to distinguish from other flu like infections. The proposed sensor is fabricated by the immobilization of LPS onto dodecanethiol (DT) modified gold electrode. Monolayer of DT is attached through covalent bond (Au-S) interaction onto the gold electrode. Thus, leptospiral antibodies from the human serum samples bind to the LPS present on self-assembled monolayer (SAM) of DT and showed a higher RCT value compared to SAM. The detection limit of the developed LPS sensor is estimated to be 100 nM. This biosensor is the first electrochemical sensing platform used for detection of LPS from Leptospira spp. This method is completely a solution-based diagnostic method and therefore it is rapid, simple, and sensitive; thus establishing a key technology towards a useful POC diagnostic strategy in serogroup level and hence an alternative to MAT.

Keywords: Electrochemical biosensor; Impedimetry; LPS; Leptospirosis; Serogroup.

MeSH terms

  • Serogroup*