Molecular Mapping of Sebaceous Squalene by Ambient Mass Spectrometry

Anal Chem. 2021 Dec 14;93(49):16608-16617. doi: 10.1021/acs.analchem.1c03983. Epub 2021 Dec 3.

Abstract

Squalene (SQ), a highly unsaturated sebaceous lipid, plays an important role in protecting human skin. To better understand the role of SQ in clinical medicine, an efficient analytical approach is needed to comprehensively study the distribution of SQ on different parts of the skin. In this study, sebaceous lipids were collected from different epidermal areas of a volunteer with sampling probes. Thermal desorption-electrospray ionization/mass spectrometry (TD-ESI/MS) was then used to characterize the lipid species on the probes, and each TD-ESI/MS analysis was completed within a few seconds without any sample pretreatment. The molecular mapping of epidermal squalene on whole-body skin was rendered by scaling the peak area of the extracted ion current (EIC) of SQ based on a temperature color gradient, where colors were assigned to the 1357 sampling locations on a 3D map of the volunteer. The image showed a higher SQ distribution on the face than any other area of the body, indicating the role of SQ in protecting facial skin. The results were in agreement with previous studies using SQ as a marker to explore sebaceous activity. The novelty and significance of this work are concluded as two points: (1) direct and rapid detection of all major classes of sebaceous lipids, including the unsaturated hydrocarbons (SQ) and nonpolar lipids (e.g., cholesterol). The results are unique compared to other conventional and ambient ionization mass spectrometry methods and (2) this is the first study to analyze SQ distribution on the whole-body skin by a high-throughput approach.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Epidermis*
  • Humans
  • Lipids
  • Mass Spectrometry
  • Skin
  • Squalene*

Substances

  • Lipids
  • Squalene