A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation

Natl Sci Rev. 2021 Apr 21;8(10):nwab065. doi: 10.1093/nsr/nwab065. eCollection 2021 Oct.

Abstract

Complete separation of water and solute is the ultimate goal of water treatment, for maximized resource recycling. However, commercialized approaches such as evaporative crystallizers consume a large amount of electricity with a significant carbon footprint, leading to calls for alternative energy-efficient and eco-friendly strategies. Here, inspired by schooling fish, we demonstrate a collective system self-assembled by expanded polystyrene (EPS)-core/graphene oxide (GO)-shell particles, which enables autonomous, efficient and complete water-solute separation powered by sunlight. By taking advantage of surface tension, these tailored particles school together naturally and are bonded as a system to function collectively and coordinatively, to nucleate, grow and output salt crystals continuously and automatically out of even saturated brine, to complete water-solute separation. Solar-vapor conversion efficiency over 90% and salt production rate as high as 0.39 kg m-2 h-1 are achieved under 1-sun illumination for this system. It reduces the carbon footprint of ∼50 kg for treating 1-ton saturated brine compared with the commercialized approaches.

Keywords: collective system; self-assemble; solar-vapor conversion; water-solute separation.