Scalable Molecular GW Calculations: Valence and Core Spectra

J Chem Theory Comput. 2021 Dec 14;17(12):7504-7517. doi: 10.1021/acs.jctc.1c00738. Epub 2021 Dec 2.

Abstract

We present a scalable implementation of the GW approximation using Gaussian atomic orbitals to study the valence and core ionization spectroscopies of molecules. The implementation of the standard spectral decomposition approach to the screened-Coulomb interaction, as well as a contour-deformation method, is described. We have implemented both of these approaches using the robust variational fitting approximation to the four-center electron repulsion integrals. We have utilized the MINRES solver with the contour-deformation approach to reduce the computational scaling by 1 order of magnitude. A complex heuristic in the quasiparticle equation solver further allows a speed-up of the computation of core and semicore ionization energies. Benchmark tests using the GW100 and CORE65 data sets and the carbon 1s binding energy of the well-studied ethyl trifluoroacetate, or ESCA molecule, were performed to validate the accuracy of our implementation. We also demonstrate and discuss the parallel performance and computational scaling of our implementation using a range of water clusters of increasing size.