Transport of intensity equation-based terahertz lensless full-field phase imaging

Opt Lett. 2021 Dec 1;46(23):5846-5849. doi: 10.1364/OL.442625.

Abstract

Terahertz (THz) phase imaging is widely spreading in various scenarios, among which full-field phase distributions are commonly retrieved by digital holography or ptychography. In this Letter, the transport of the intensity equation reconstruction method is applied into the THz band. An algorithm named the lensless US-transport of intensity equation (TIE) is proposed to accommodate to an in-line configuration. The object phase is retrieved by primarily conducting iterations between the axial intensity derivative and the phase distribution at the recording plane and subsequent backward diffraction propagation. This method is applicable to both isolated and extended weakly absorbing samples with higher reconstruction quality and remarkably less time cost than holographic phase retrieval algorithms. It can also be attempted in other non-interferometric geometries or using low-cost partially coherent THz sources, which significantly broaden the application scope of THz phase imaging.