Self-Limiting Opto-Electrochemical Thinning of Transition-Metal Dichalcogenides

ACS Appl Mater Interfaces. 2021 Dec 15;13(49):58966-58973. doi: 10.1021/acsami.1c19163. Epub 2021 Dec 1.

Abstract

Two-dimensional monolayer and few-layer transition-metal dichalcogenides (TMDs) are promising for advanced electronic and photonic applications due to their extraordinary optoelectronic and mechanical properties. However, it has remained challenging to produce high-quality TMD thin films with controlled thickness and desired micropatterns, which are essential for their practical implementation in functional devices. In this work, a self-limiting opto-electrochemical thinning (sOET) technique is developed for on-demand thinning and patterning of TMD flakes at high efficiency. Benefiting from optically enhanced electrochemical reactions, sOET features a low operational optical power density of down to 70 μW μm-2 to avoid photodamage and thermal damage to the thinned TMD flakes. Through selective optical excitation with different laser wavelengths based on the thickness-dependent band gaps of TMD materials, sOET enables precise control over the final thickness of TMD flakes. With the capability of thickness control and site-specific patterning, our sOET offers an effective route to fabricating high-quality TMD materials for a broad range of applications in nanoelectronics, nanomechanics, and nanophotonics.

Keywords: laser thinning; layer-dependent; opto-electrochemical; self-limiting; transition-metal dichalcogenides.