Development and Characterization of Novel Flow Injection, Thin-Layer, and Batch Cells for Electroanalytical Applications Using Screen-Printed Electrodes

Anal Chem. 2021 Dec 14;93(49):16690-16699. doi: 10.1021/acs.analchem.1c04337. Epub 2021 Dec 1.

Abstract

In the present paper, the design, fabrication, and analytical applications of three novel cells for flow injection, thin-layer, and batch electrochemical measurements using screen-printed electrode chips (SPECs) are described. Each cell consisted of an acrylic base and a transparent acrylic cover. The essential construction feature of each cell base was a cavity to accommodate the SPEC, whereas the construction features of the clear acrylic cover determined the cell shape and its function. The presented cells offered several common advantages, which include (i) convenient electrical connection of the SPEC to any potentiostat without the need for special cables, (ii) the SPEC was completely contained within the cell body, which eliminated the risk of its breakage, (iii) suitable for use with a large number of commercially available SPECs, and (iv) excellent SPEC sealing. The flow cell offered additional advantages of convenient customization of the cell dead volume and convenient visual inspection of the surface and the vicinity of SPEs. The presented thin-layer cell is the first report on a dedicated cell which realized a near-ideal thin-layer steady-state voltammetry using SPECs. The universal batch cell (UBC) offered extreme versatility and proved suitable for all batch applications in sample volumes ranging from 25 μL to 40 mL with an optional controlled temperature and atmosphere. Moreover, a novel way to achieve stirred-solution chronoamperometry and hydrodynamic voltammetry using SPECs (with superior signal-to-noise ratios) using the UBC is described. Electrochemical measurements to demonstrate the merits and the applicability of all cells are also presented.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrodes*
  • Injections