Double shelled hollow CoS2@MoS2@NiS2 polyhedron as advanced trifunctional electrocatalyst for zinc-air battery and self-powered overall water splitting

J Colloid Interface Sci. 2022 Mar 15:610:653-662. doi: 10.1016/j.jcis.2021.11.115. Epub 2021 Nov 23.

Abstract

Electrocatalysts play important role in various energy conversion and storage devices. The catalytic performance of electrocatalysts can be enhanced through the increasement of intrinsic catalytic activity by optimizing electronic structure and the improvement of exposed active sites by designing proper nanostructures. In this work, CoS2@MoS2@NiS2 nano polyhedron with double-shelled structure was prepared using metal organic framework as a precursor. Due to the rational integration of multifunctional active center, the strong electronic interaction of the various component, the high electrochemical surface area and shortened mass transport induced by the special structure, CoS2@MoS2@NiS2 exhibits high catalytic activity for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, low overpotentials of 156 and 200 mV was achieved to deliver a current density of 10 mA cm-2 for HER and OER, and a high half-wave potential of 0.80 V was observed for ORR. More importantly, the Zn-air battery assembled by CoS2@MoS2@NiS2 exhibits a high-power density of 80.28 mW cm-2 and could effectively drive overall water splitting. This work provides a new platform for designing multifunctional catalysts with high activity for energy conversion and storage.

Keywords: Electrocatalysis; Metal sulfides; Trifunctional catalysts; Water splitting; Zn-air battery.