Post-nucleation evolution of the liquid-solid interface in nanowire growth

Nanotechnology. 2021 Dec 17;33(10). doi: 10.1088/1361-6528/ac3e8d.

Abstract

We study usingin situtransmission electron microscopy the birth of GaAs nanowires from liquid Au-Ga catalysts on amorphous substrates. Lattice-resolved observations of the starting stages of growth are reported here for the first time. It reveals how the initial nanostructure evolves into a nanowire growing in a zincblende 〈111〉 or the equivalent wurtzite〈0001〉 direction. This growth direction(s) is what is typically observed in most III-V and II-VI nanowires. However, the reason for this preferential nanowire growth along this direction is still a dilemma. Based on the videos recorded shortly after the nucleation of nanowires, we argue that the lower catalyst droplet-nanowire interface energy of the {111} facet when zincblende (or the equivalent {0001} facet in wurtzite) is the reason for this direction selectivity in nanowires.

Keywords: catalyst-nanowire interface energy; growth direction; in situ TEM; lattice resolved; nucleation.