Handheld Microfluidic Filtration Platform Enables Rapid, Low-Cost, and Robust Self-Testing of SARS-CoV-2 Virus

Small. 2021 Dec;17(52):e2104009. doi: 10.1002/smll.202104009. Epub 2021 Nov 30.

Abstract

Here, a novel microfluidic test kit combining ultrahigh throughput hydrodynamic filtration and sandwich immunoassay is reported. Specifically, nano and microbeads coated with two different, noncompetitive antibodies, are used to capture the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) proteins simultaneously, forming larger complexes. Microfluidic filtration discards free nanobeads but retains antigen-bridged complexes in the observation zone, where a display of red color indicates the presence of antigen in the sample. This testing platform exhibits high throughput separation (<30 s) and enrichment of antigen that exceeds the traditional lateral flow assays or microfluidic assays, with a low limit of detection (LoD) < 100 copies mL-1 . In two rounds of clinical trials conducted in December 2020 and August 2021, the assays demonstrate high sensitivities of 95.4% and 100%, respectively, which proves this microfluidic test kit is capable of detecting SARS-CoV-2 virus variants evolved over significant periods of time. Furthermore, the mass-produced chip can be fabricated at a cost of $0.98/test and the robust design allows the chip to be reused for over 50 times. All of these features make the microfluidic test kit particularly suitable for areas with inadequate medical infrastructure and a shortage of laboratory resources.

Keywords: COVID-19 diagnostics; biomedical engineering; microassays; microfluidics; point of care.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Humans
  • Immunoassay
  • Microfluidics
  • SARS-CoV-2*
  • Self-Testing
  • Sensitivity and Specificity