Hydroclimate change in the Garhwal Himalaya, India at 4200 yr BP coincident with the contraction of the Indus civilization

Sci Rep. 2021 Nov 29;11(1):23082. doi: 10.1038/s41598-021-02496-5.

Abstract

High-resolution analysis of a 3.80 m sediment core recovered from Deoria Tal, a mid-elevation lake located at 2393 m a.s.l. in the Garhwal Himalaya, documents long-term and abrupt hydroclimate fluctuations in northern India during the mid- to late Holocene. The sediment chronology, based on ten 14C dates, indicates the core spans 5200 years. Non-destructive, radiological imaging approaches (X-ray fluorescence (XRF), X-ray imaging, and CT scans) were used to assess the response of the lake system to changing hydroclimatic conditions. Variations in elemental concentrations and sediment density evidenced notable hydroclimate change episodes centered at 4850, 4200, and 3100 cal yr BP. Elevated detrital input, greater sediment density, decreased lake ventilation, and lower autochthonous productivity reflects lake deepening between 4350 and 4200 cal yr BP. An abrupt shift in elemental concentrations and sediment density indicated the onset of lake drawdown at 4200 cal yr BP and a negative hydroclimate anomaly between 4200 and 4050 cal yr BP. Lower detrital flux, decreased sediment density, increased oxygenation, and higher autochthonous productivity, reflects a reduction in lake volume between 3200 and 3100 cal yr BP. The potential link between abrupt climate change at 4200 cal yr BP and the contraction of the Indus civilization is explored.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.