An MYB Transcription Factor Modulates Panax notoginseng Resistance Against the Root Rot Pathogen Fusarium solani by Regulating the Jasmonate Acid Signaling Pathway and Photosynthesis

Phytopathology. 2022 Jun;112(6):1323-1334. doi: 10.1094/PHYTO-07-21-0283-R. Epub 2022 Apr 29.

Abstract

Root rot of Panax notoginseng, a precious Chinese medicinal plant, seriously impacts its sustainable production. However, the molecular regulatory mechanisms employed by P. notoginseng against root rot pathogens, including Fusarium solani, are still unclear. In this study, the PnMYB2 gene was isolated, and its expression was affected by independent treatments with four signaling molecules (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) as assessed by quantitative real-time PCR. Moreover, the PnMYB2 expression level was induced by F. solani infection. The PnMYB2 protein localized to the nucleus and may function as a transcription factor. When overexpressed in transgenic tobacco, the PnMYB2 gene conferred resistance to F. solani. Jasmonic acid (JA) metabolism and disease resistance-related genes were induced in the transgenic tobacco, and the JA content significantly increased compared with in the wild type. Additionally, transcriptome sequencing, Kyoto Encyclopedia of Genes and Genomes annotation enrichment, and metabolic pathway analyses of the differentially expressed genes in the transgenic tobacco revealed that JA metabolic, photosynthetic, and defense response-related pathways were activated. In summary, PnMYB2 is an important transcription factor in the defense responses of P. notoginseng against root rot pathogens that acts by regulating JA signaling, photosynthesis, and disease-resistance genes.

Keywords: abiotic disorders; disease resistance; fungal pathogens; molecular; plant stress.

MeSH terms

  • Cyclopentanes
  • Disease Resistance / genetics
  • Fusarium* / metabolism
  • Nicotiana / metabolism
  • Oxylipins
  • Panax notoginseng* / genetics
  • Panax notoginseng* / metabolism
  • Photosynthesis
  • Plant Diseases / genetics
  • Signal Transduction
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Cyclopentanes
  • Oxylipins
  • Transcription Factors
  • jasmonic acid

Supplementary concepts

  • Fusarium solani