Application of a Pickering Emulsified Polymeric Gel System as a Water Blocking Agent

ACS Omega. 2021 Nov 8;6(46):30919-30931. doi: 10.1021/acsomega.1c02956. eCollection 2021 Nov 23.

Abstract

The conventional methods for controlling excess water production in oil/gas wells can be classified on the basis of the mechanism (pore-blocking mechanism and relative permeability modification) used. Gel systems developed on the basis of a pore-blocking mechanism completely block the pores and stop the flow of both oil and water, whereas a relative permeability modifier (RPM) only restricts the flow of a single phase of the fluid. The gel working on the basis of the pore-blocking mechanism is known as a total blocking gel. An invert emulsified (PAM-PEI) polymer gel is a relative permeability modifier system. The same invert emulsion system is tested as a total blocking gel system in this research work. The dual-injection technique (1st injection and 2nd injection) was used for this purpose. In this research work, the emulsion system was tested at a temperature of 105 °C. The core sections with drilled holes and fractures were used for the core flooding experiments, representing a highly fractured reservoir. The developed emulsified gel system was characterized using a dilution test, an inverted bottle test, microscopic images, and FTIR images. The emulsified polymer gel was tested using a core flooding experiment. After the 2nd injection, the postflood medical CT and micro-CT images of the core sections clearly showed the presence of two different phases in the core section, i.e., the oil phase and the gel phase. The core flooding experiment result indicates that the gel formed after the 2nd injection of the emulsion system can withstand a very high differential pressure, i.e., above 2000 psi. The gel did not allow any oil or water to be produced. Hence, the developed emulsified polymer gel system with the help of a dual-injection technique can be efficiently used as a total blocking gel for high-temperature reservoirs.