Engineering mammalian living materials towards clinically relevant therapeutics

EBioMedicine. 2021 Dec:74:103717. doi: 10.1016/j.ebiom.2021.103717. Epub 2021 Nov 25.

Abstract

Engineered living materials represent a new generation of human-made biotherapeutics that are highly attractive for a myriad of medical applications. In essence, such cell-rich platforms provide encodable bioactivities with extended lifetimes and environmental multi-adaptability currently unattainable in conventional biomaterial platforms. Emerging cell bioengineering tools are herein discussed from the perspective of materializing living cells as cooperative building blocks that drive the assembly of multiscale living materials. Owing to their living character, pristine cellular units can also be imparted with additional therapeutically-relevant biofunctionalities. On this focus, the most recent advances on the engineering of mammalian living materials and their biomedical applications are herein outlined, alongside with a critical perspective on major roadblocks hindering their realistic clinical translation. All in all, transposing the concept of leveraging living materials as autologous tissue-building entities and/or self-regulated biotherapeutics opens new realms for improving precision and personalized medicine strategies in the foreseeable future.

Keywords: Biohybrid constructs; Biomaterials; Biomedicine; Cell engineering; Living materials; Tissue Engineering.

Publication types

  • Review

MeSH terms

  • Animals
  • Biological Therapy
  • Cell Engineering / methods*
  • Humans
  • Mammals
  • Regenerative Medicine