Capillary-Confinement Crystallization for Monolayer Molecular Crystal Arrays

Adv Mater. 2022 Feb;34(7):e2107574. doi: 10.1002/adma.202107574. Epub 2022 Jan 2.

Abstract

Organic single-crystalline semiconductors are highly desired for the fabrication of integrated electronic circuits, yet their uniform growth and efficient patterning is a huge challenge. Here, a general solution procedure named the "soft-template-assisted-assembly method" is developed to prepare centimeter-scale monolayer molecular crystal (MMC) arrays with precise regulation over their size and location via a capillary-confinement crystallization process. It is remarkable that the field-effect mobility of the array is highly uniform, with variation less than 4.4%, which demonstrates the most uniform organic single-crystal arrays ever reported so far. Simulations based on fluid dynamics are carried out to understand the function mechanism of this method. Thanks to the ultrasmooth crystalline orientation surface of MMCs, high-quality p-n heterojunction arrays can be prepared by weak epitaxy growth of n-type material atop the MMC. The p-n heterojunction field-effect transistors show ambipolar characteristics and the corresponding inverters constructed by these heterojunctions exhibit a competitive gain of 155. This work provides a general strategy to realize the preparation and application of logic complementary circuits based on patterned organic single crystals.

Keywords: inverters; logic circuits; monolayer molecular crystals; organic field-effect transistors; organic semiconductors.