Highly Efficient Light-Emitting Diodes Based on an Organic Antimony(III) Halide Hybrid

Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202113450. doi: 10.1002/anie.202113450. Epub 2021 Nov 27.

Abstract

As low-dimensional lead-free hybrids with higher stability and lower toxicity than those of three-dimensional lead perovskites, organic antimony(III) halides show great application potential in opt-electronic field owing to diverse topologies along with exceptional optical properties. We report herein an antimony(III) hybrid (MePPh3 )2 SbCl5 with a zero-dimensional (0D) structure, which exhibits brilliant orange emission peaked at 593 nm with near-unity photoluminescent quantum yield (99.4 %). The characterization of photophysical properties demonstrates that the broadband emission with a microsecond lifetime (3.24 μs) arises from self-trapped emission (STE). Electrically driven organic light-emitting diodes (OLEDs) based on neat and doped films of (MePPh3 )2 SbCl5 were fabricated. The doped devices show significant improvement in comparison to non-doped OLEDs. Owing to the much improved surface morphology and balanced carrier transport in light-emitting layers of doped devices, the peak luminance, current efficiency (CE) and external quantum efficiency (EQE) are boosted from 82 cd m-2 to 3500 cd m-2 , 1.1 cd A-1 to 6.8 cd A-1 , and 0.7 % to 3.1 % relative to non-doped devices, respectively.

Keywords: OLED; Organic metal halide hybrid; Self-trapped emission; Zero-dimension.