Effect of N-acetyl chito-oligosaccharides on the biosynthesis and properties of chitin in Saccharomyces cerevisiae

Folia Microbiol (Praha). 2022 Apr;67(2):285-289. doi: 10.1007/s12223-021-00933-6. Epub 2021 Nov 26.

Abstract

Chitin exists in yeast cells both as free and bound in a complex with β-1,3/β-1,6-glucan. The formation of covalent links between chitin and β-glucans is catalyzed by the enzymes Crh1 and Crh2, acting as transglycosylases. We found that N-acetyl-chito-oligosaccharides, as well as laminarioligosaccharides, the respective products of partial hydrolysis of chitin, and β-1,3-glucan, interfered with reactions catalyzed by Crh1p and Crh2p in vitro. However, the N-acetyl-chito-oligosaccharides did not influence the growth rate of the yeast, neither did they affect the yeast phenotype, but they prolonged the lag phase. Inhibition of Crh1 and Crh2 in vivo with oligosaccharides derived from chitin leads to an increase of alkali-soluble chitin and a decrease in the amount of chitin linked to β-glucans. In addition, yeast cells growing in the presence of N-acetyl-D-chito-oligosaccharides accumulated more chitin than control cells.

MeSH terms

  • Cell Wall / metabolism
  • Chitin / metabolism
  • Oligosaccharides / metabolism
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / metabolism

Substances

  • Oligosaccharides
  • Saccharomyces cerevisiae Proteins
  • Chitin