Changes in Plasma Choline and the Betaine-to-Choline Ratio in Response to 6-Month Lifestyle Intervention Are Associated with the Changes of Lipid Profiles and Intestinal Microbiota: The ICAAN Study

Nutrients. 2021 Nov 10;13(11):4006. doi: 10.3390/nu13114006.

Abstract

Trimethylamine N-oxide (TMAO) and its precursors, including choline, betaine, and L-carnitine, are gut microbiota-related metabolites associated with the risk of obesity. We aimed (1) to comprehensively examine whether the changes in plasma TMAO and its precursors induced by lifestyle intervention are associated with the improvements in plasma metabolic parameters; and (2) to identify the fecal microbiome profiles and nutrient intakes associated with these metabolites and metabolic index. Data from 40 participants (obese children and adolescents) having the plasma metabolites data related to the changes in BMI z-scores after 6-month lifestyle intervention were analyzed. In this study, we observed that choline and the betaine-to-choline ratio (B/C) showed different patterns depending on the changes in BMI z-scores by the response to lifestyle intervention. During the 6 months, an increase in choline and a decrease in B/C were observed in non-responders. We also found that changes in choline and B/C were associated with the improvements in plasma lipid levels. Individuals who showed reduced choline or increased B/C from the baseline to 6 months had a significant decrease in LDL-cholesterol over 6 months compared to those with increased choline or decreased B/C, respectively. In addition, the increase in choline or decrease in B/C was associated with the increase in plasma triglycerides. The distribution of gut microbiota belonging to the Firmicutes, such as Clostridia, Clostridiales, Peptostreptococcaceae, Romboutsia, and Romboutsia timonensis was altered to be lower during the 6 months both as choline decreased and B/C increased. Moreover, the decrease in choline and the increase in B/C were associated with reduced fat intake and increased fiber intake after the 6-month intervention. Finally, lower abundance of Romboutsia showed the association with lower LDL-cholesterol and higher intake of fiber. In summary, we demonstrated that reduced choline and increased B/C by lifestyle intervention were associated with the improvements of LDL-cholesterol and triglycerides, low-fat and high-fiber intakes, and low abundance of Firmicutes. These indicate that changes to circulating choline and B/C could predict individuals' changes in metabolic compositions in response to the lifestyle intervention.

Keywords: Firmicutes; betaine; choline; gut microbiota; metabolic parameters; metabolite.

MeSH terms

  • Adolescent
  • Bacteria / classification
  • Betaine / blood*
  • Betaine / metabolism
  • Carnitine / blood
  • Child
  • Choline / blood*
  • Choline / metabolism
  • Clostridiales
  • Eating
  • Feces / microbiology
  • Firmicutes
  • Gastrointestinal Microbiome / genetics
  • Gastrointestinal Microbiome / physiology*
  • Humans
  • Life Style*
  • Lipid Metabolism*
  • Lipids / blood*
  • Methylamines
  • Nutrients
  • Pediatric Obesity
  • RNA, Ribosomal, 16S / genetics

Substances

  • Lipids
  • Methylamines
  • RNA, Ribosomal, 16S
  • Betaine
  • trimethyloxamine
  • Choline
  • Carnitine

Supplementary concepts

  • Romboutsia timonensis