Sphingomonas and Phenylobacterium as Major Microbiota in Thymic Epithelial Tumors

J Pers Med. 2021 Oct 26;11(11):1092. doi: 10.3390/jpm11111092.

Abstract

The microbiota has been reported to be closely associated with carcinogenesis and cancer progression. However, its involvement in the pathology of thymoma remains unknown. In this study, we aimed to identify thymoma-specific microbiota using resected thymoma samples. Nineteen thymoma tissue samples were analyzed through polymerase chain reaction amplification and 16S rRNA gene sequencing. The subjects were grouped according to histology, driver mutation status in the GTF2I gene, PD-L1 status, and smoking habits. To identify the taxa composition of each sample, the operational taxonomic units (OTUs) were classified on the effective tags with 97% identity. The Shannon Index of the 97% identity OTUs was calculated to evaluate the alpha diversity. The linear discriminant analysis effect size (LEfSe) method was used to compare the relative abundances of all the bacterial taxa. We identified 107 OTUs in the tumor tissues, which were classified into 26 genera. Sphingomonas and Phenylobacterium were identified as abundant genera in almost all the samples. No significant difference was determined in the alpha diversity within these groups; however, type A thymoma tended to exhibit a higher bacterial diversity than type B thymoma. Through the LEfSe analysis, we identified the following differentially abundant taxa: Bacilli, Firmicutes, and Lactobacillales in type A thymoma; Proteobacteria in type B thymoma; Gammaproteobacteria in tumors harboring the GTF2I mutation; and Alphaproteobacteria in tumors without the GTF2I mutation. In conclusion, Sphingomonas and Phenylobacterium were identified as dominant genera in thymic epithelial tumors. These genera appear to comprise the thymoma-specific microbiota.

Keywords: 16S RNA sequencing; driver mutation; genera; microbiome; thymoma.