A Series of Novel Pentagonal-Bipyramidal Erbium(III) Complexes with Acyclic Chelating N3O2 Schiff-Base Ligands: Synthesis, Structure, and Magnetism

Molecules. 2021 Nov 16;26(22):6908. doi: 10.3390/molecules26226908.

Abstract

A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2]- (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2]- (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1-6 were studied. The AC magnetic measurements revealed that most of Compounds 1-6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16-28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1-6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.

Keywords: DC and AC magnetic properties; Er(III) complexes; crystal structure; field-induced single-molecular magnets; ligands H2DAPMBH and H4DAPS; seven-coordinate complexes.