Syntheses and Characterization of the First Cycloheptatrienyl Transition-Metal Complexes with a M-CF3 Bond

Molecules. 2021 Nov 12;26(22):6838. doi: 10.3390/molecules26226838.

Abstract

The organometallic chemistry of metal complexes with organocyclic ligands of higher than five hapticity is much more lacking than the chemistry of metal complexes with η5-cyclopentadienyl ligands, which has been explored in considerable depth, resulting in novel advances. The main reason for this is stability. In particular, reports indicate that (η7-C7H7)MLn complexes are considerably less stable than analogous (η5-C5H5)MLn. In perfluoroalkyl metal chemistry, there is currently no reported (η7-C7H7)MLn derivative, whereas a number of alkylated ones are known and important conclusions have been drawn about their stability. Responding to this void, and using Morrison's trifluoromethylating reagent, the present study reports the synthesis and characterization of the first cycloheptatrienyl molybdenum complexes bearing the trifluoromethyl moiety; (η7-C7H7)Mo(CO)2CF3 (I), and (η7-C7H7)Mo(CO)(PMe3)CF3 (II) and discusses their low thermal instability.

Keywords: cycloheptatrienyl ligand; molybdenum complexes; trifluoromethyl group.