Three-Dimensional Reconstruction of Light Field Based on Phase Similarity

Sensors (Basel). 2021 Nov 20;21(22):7734. doi: 10.3390/s21227734.

Abstract

Light field imaging plays an increasingly important role in the field of three-dimensional (3D) reconstruction because of its ability to quickly obtain four-dimensional information (angle and space) of the scene. In this paper, a 3D reconstruction method of light field based on phase similarity is proposed to increase the accuracy of depth estimation and the scope of applicability of epipolar plane image (EPI). The calibration method of the light field camera was used to obtain the relationship between disparity and depth, and the projector calibration was removed to make the experimental procedure more flexible. Then, the disparity estimation algorithm based on phase similarity was designed to effectively improve the reliability and accuracy of disparity calculation, in which the phase information was used instead of the structure tensor, and the morphological processing method was used to denoise and optimize the disparity map. Finally, 3D reconstruction of the light field was realized by combining disparity information with the calibrated relationship. The experimental results showed that the reconstruction standard deviation of the two objects was 0.3179 mm and 0.3865 mm compared with the ground truth of the measured objects, respectively. Compared with the traditional EPI method, our method can not only make EPI perform well in a single scene or blurred texture situations but also maintain good reconstruction accuracy.

Keywords: 3D reconstruction; fringes projection; light field; phase information.