Controlled Measurement Setup for Ultra-Wideband Dielectric Modeling of Muscle Tissue in 20-45 °C Temperature Range

Sensors (Basel). 2021 Nov 17;21(22):7644. doi: 10.3390/s21227644.

Abstract

In order to design electromagnetic applicators for diagnostic and therapeutic applications, an adequate dielectric tissue model is required. In addition, tissue temperature will heavily influence the dielectric properties and the dielectric model should, thus, be extended to incorporate this temperature dependence. Thus, this work has a dual purpose. Given the influence of temperature, dehydration, and probe-to-tissue contact pressure on dielectric measurements, this work will initially present the first setup to actively control and monitor the temperature of the sample, the dehydration rate of the investigated sample, and the applied probe-to-tissue contact pressure. Secondly, this work measured the dielectric properties of porcine muscle in the 0.5-40 GHz frequency range for temperatures from 20 °C to 45 °C. Following measurements, a single-pole Cole-Cole model is presented, in which the five Cole-Cole parameters (ϵ∞, σs, Δϵ, τ, and α) are given by a first order polynomial as function of tissue temperature. The dielectric model closely agrees with the limited dielectric models known in literature for muscle tissue at 37 °C, which makes it suited for the design of in vivo applicators. Furthermore, the dielectric data at 41-45 °C is of great importance for the design of hyperthermia applicators.

Keywords: biological tissues; dielectric measurement; dielectric model; measurement metadata; muscle tissue; open-ended coaxial probe; temperature; ultra-wideband.

MeSH terms

  • Algorithms*
  • Animals
  • Muscles*
  • Swine
  • Temperature