Development of a High-Resolution Acoustic Sensor Based on ZnO Film Deposited by the RF Magnetron Sputtering Method

Materials (Basel). 2021 Nov 14;14(22):6870. doi: 10.3390/ma14226870.

Abstract

In the study, an acoustic sensor for a high-resolution acoustic microscope was fabricated using zinc oxide (ZnO) piezoelectric ceramics. The c-cut sapphire was processed into a lens shape to deposit a ZnO film using radio frequency (RF) magnetron sputtering, and an upper and a lower electrode were deposited using E-beam evaporation. The electrode was a Au thin film, and a Ti thin film was used as an adhesion layer. The surface microstructure of the ZnO film was observed using a scanning electron microscope (SEM), the thickness of the film was measured using a focused ion beam (FIB) for piezoelectric ceramics deposited on the sapphire wafer, and the thickness of ZnO was measured to be 4.87 μm. As a result of analyzing the crystal growth plane using X-ray diffraction (XRD) analysis, it was confirmed that the piezoelectric characteristics were grown to the (0002) plane. The sensor fabricated in this study had a center frequency of 352 MHz. The bandwidth indicates the range of upper (375 MHz) and lower (328 MHz) frequencies at the -6 dB level of the center frequency. As a result of image analysis using the resolution chart, the resolution was about 1 μm.

Keywords: acoustic sensor; high-resolution scanning acoustic microscope (HR-SAM); piezoelectric ceramics; zinc oxide film.