Chemical Constituents, In Vitro Antioxidant Activity and In Silico Study on NADPH Oxidase of Allium sativum L. (Garlic) Essential Oil

Antioxidants (Basel). 2021 Nov 20;10(11):1844. doi: 10.3390/antiox10111844.

Abstract

Allium sativum L., also known as garlic, is a perennial plant widely used as a spice and also considered a medicinal herb since antiquity. The aim of this study was to determine by gas chromatography-mass spectrometry (GC-MS) the chemical profile fingerprint of the essential oil (EO) of one accession of Peruvian A. sativum (garlic), to evaluate its antioxidant activity and an in- silico study on NADPH oxidase activity of the volatile phytoconstituents. The antioxidant activity was tested using DPPH and β-carotene assays. An in-silico study was carried out on NADPH oxidase (PDB ID: 2CDU), as was ADMET prediction. The results indicated that diallyl trisulfide (44.21%) is the major component of the EO, followed by diallyl disulfide (22.08%), allyl methyl trisulfide (9.72%), 2-vinyl-4H-1,3-dithiine (4.78%), and α-bisabolol (3.32%). Furthermore, the EO showed antioxidant activity against DPPH radical (IC50 = 124.60 ± 2.3 µg/mL) and β-carotene bleaching (IC50 = 328.51 ± 2.0). The best docking score on NADPH oxidase corresponds to α-bisabolol (ΔG = -10.62 kcal/mol), followed by 5-methyl-1,2,3,4-tetrathiane (ΔG = -9.33 kcal/mol). Additionally, the volatile components could be linked to the observed antioxidant activity, leading to potential inhibitors of NADPH oxidase.

Keywords: allyl compounds; antioxidant enzyme; molecular dynamic; oxidative stress; phytochemical study.