Changes in Browning Degree and Reducibility of Polyphenols during Autoxidation and Enzymatic Oxidation

Antioxidants (Basel). 2021 Nov 15;10(11):1809. doi: 10.3390/antiox10111809.

Abstract

In the present study, the browning degree and reducing power of browning products of catechin (CT), epicatechin (EC), caffeic acid (CA), and chlorogenic acid (CGA) in autoxidation and enzymatic oxidation were investigated. Influencing factors were considered, such as pH, substrate species and composition, and eugenol. Results show that polyphenols' autoxidation was intensified in an alkaline environment, but the reducing power was not improved. Products of enzymatic oxidation at a neutral pH have higher reducing power than autoxidation. In enzymatic oxidation, the browning degree of mixed substrates was higher than that of a single polyphenol. The reducing power of flavonoid mixed solution (CT and EC) was higher than those of phenolic acids' (CA and CGA) in autoxidation and enzymatic oxidation. Eugenol activity studies have shown that eugenol could increase autoxidation browning but inhibit enzymatic browning. Activity test and molecular docking results show that eugenol could inhibit tyrosinase.

Keywords: autoxidation; enzymatic browning; eugenol; molecular docking; polyphenol.