Repeated cocaine or methamphetamine treatment alters astrocytic CRF2 and GLAST expression in the ventral midbrain

Addict Biol. 2022 Mar;27(2):e13120. doi: 10.1111/adb.13120. Epub 2021 Nov 25.

Abstract

Dopamine neurons in the substantia nigra (SN) and ventral tegmental area (VTA) play a central role in the reinforcing properties of abused drugs including methamphetamine and cocaine. Chronic effects of psychostimulants in the SN/VTA also involve non-dopaminergic transmitters, including glutamate and the stress-related peptide corticotropin-releasing factor (CRF). In the SN/VTA, astrocytes express a variety of membrane-bound neurotransmitter receptors and transporters that influence neurotransmission. CRF receptor type 2 (CRF2) activity in the VTA is important for stress-induced relapse and drug-seeking behaviour, but the localization of its effects is incompletely understood. Here, we first identified CRF2 transcript in astrocytes of the SN/VTA using RNA-Seq in Aldh1l1;NuTRAP mice and confirmed it using in situ hybridization (RNAscope) in wild-type mice. We then used immunofluorescence to quantify the astrocytic marker protein S100β, glial-specific glutamate/aspartate transporter GLAST, and CRF2 in the SN/VTA following 12 days of treatment (i.p.) with methamphetamine (3 mg/kg), cocaine (10 mg/kg), or saline. We observed a significant decrease in GLAST immunofluorescence in brains of psychostimulant treated mice compared with saline controls. In addition, we observed increased labelling of CRF2 in drug treated groups, a decrease in the number of S100β positive cells, and an increase of co-staining of CRF2 with both S100β and tyrosine hydroxylase (dopamine neurons). Our results suggest a significant interaction between CRF2, GLAST, and astrocytes in the midbrain that emerges with repeated exposure to psychostimulants. These findings provide rationale for future investigation of astrocyte-based strategies for altering cellular and circuit function in response to stress and drug exposure.

Keywords: NuTRAP; S100β; mice; psychostimulant; substantia nigra; ventral tegmental area.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Transport System X-AG / metabolism*
  • Animals
  • Astrocytes / metabolism
  • Cocaine* / pharmacology
  • Corticotropin-Releasing Hormone / metabolism*
  • Methamphetamine* / pharmacology
  • Mice
  • Ventral Tegmental Area* / drug effects
  • Ventral Tegmental Area* / metabolism

Substances

  • Amino Acid Transport System X-AG
  • Methamphetamine
  • Corticotropin-Releasing Hormone
  • Cocaine