C-doping anisotropy effects on borophene electronic transport

J Phys Condens Matter. 2021 Dec 15;34(9). doi: 10.1088/1361-648X/ac3d54.

Abstract

The electronic transport anisotropy for different C-doped borophene polymorphs (β12andχ3) was investigated theoretically combining density functional theory and non-equilibrium Green's function. The energetic stability analysis reveals that B atoms replaced by C is more energetically favorable forχ3phase. We also verify a directional character of the electronic band structure on C-doped borophene for both phases. Simulated scanning tunneling microscopy and also total density of charge confirm the directional character of the bonds. The zero bias transmission forβ12phase atE-EF= 0 shows that C-doping induces a local current confinement along the lines of doped sites. TheI-Vcurves show that C-doping leads to an anisotropy amplification in theβ12than in theχ3. The possibility of confining the electronic current at an specific region of the C-doped systems, along with the different adsorption features of the doped sites, poses them as promising candidates to highly sensitive and selective gas sensors.

Keywords: C-doping; borophene; elecronic transport; scanning tunneling microscopy.