Inter-annual reduction in rice Cd and its eco-environmental controls in 6-year biannual mineral amendment in subtropical double-rice cropping ecosystems

Environ Pollut. 2022 Jan 15:293:118566. doi: 10.1016/j.envpol.2021.118566. Epub 2021 Nov 22.

Abstract

The alkaline mineral amendment is a practical means of alleviating Cd concentration in rice grain (CdR) in the short-term; however, the long-term remediation effect of mineral amendment on the CdR and the eco-environmental controls remains unknown. Here a mineral (Si-Ca-Mg) amendment, calcined primarily from molybdenum tailings and dolomite, was applied biannually over 6 years (12 seasons) to acidic and moderately Cd-contaminated double-rice cropping ecosystems. This study investigated the inter-annual variation of Cd in the rice-soil ecosystem and the eco-environmental controls in subtropical rice ecosystems. CdR was reduced by 50%-86% following mineral amendment. The within-year reduction in CdR was similar between early rice (50%-86%, mean of 68%) and late rice (68%-85%, mean of 74%), leading to CdR in all early rice and in 83% of late rice samples below the upper limit (0.2 mg kg-1) of the China National Food Safety Standards. In contrast, the inter-annual reduction in CdR was moderately variable, showing a greater CdR reduction in the later 3 years (73%-86%) than in the former 3 years (54%-79%). Three years continuous mineral amendment was required to guarantee the safety rice production. The concentrations of DTPA-extractable and exchangeable Cd fractions in soil were reduced, while the concentration of oxides-bound Cd was increased. In addition, the soil pH, concentrations of Olsen-P and exchangeable Ca and Mg were elevated. These imply a lower apparent phytoavailability of Cd in the soil following mineral amendment. An empirical model of the 3-variable using soil DTPA-Cd, soil Olsen-P, and a climatic factor (precipitation) effectively predicted temporal changes in CdR. Our study demonstrates that Cd phytoavailability in soil (indexed by DTPA-extractable Cd) and climatic factors (e.g., temperature and precipitation) may directly/indirectly control the inter-annual reduction in CdR following mineral amendment in slightly and moderately Cd-contaminated paddy ecosystems.

Keywords: Cd contamination; Cd immobilization; Paddy soil; Phytoavailability; Prediction model of rice Cd; pH.

MeSH terms

  • Cadmium / analysis
  • Ecosystem
  • Minerals
  • Oryza*
  • Soil Pollutants* / analysis

Substances

  • Minerals
  • Soil Pollutants
  • Cadmium