Image quality in liver CT: low-dose deep learning vs standard-dose model-based iterative reconstructions

Eur Radiol. 2022 May;32(5):2865-2874. doi: 10.1007/s00330-021-08380-0. Epub 2021 Nov 25.

Abstract

Objectives: To compare the overall image quality and detectability of significant (malignant and pre-malignant) liver lesions of low-dose liver CT (LDCT, 33.3% dose) using deep learning denoising (DLD) to standard-dose CT (SDCT, 100% dose) using model-based iterative reconstruction (MBIR).

Methods: In this retrospective study, CT images of 80 patients with hepatic focal lesions were included. For noninferiority analysis of overall image quality, a margin of - 0.5 points (scored in a 5-point scale) for the difference between scan protocols was pre-defined. Other quantitative or qualitative image quality assessments were performed. Additionally, detectability of significant liver lesions was compared, with 64 pairs of CT, using the jackknife alternative free-response ROC analysis, with noninferior margin defined by the lower limit of 95% confidence interval (CI) of the difference of figure-of-merit less than - 0.1.

Results: The mean overall image quality scores with LDCT and SDCT were 3.77 ± 0.38 and 3.94 ± 0.34, respectively, demonstrating a difference of - 0.17 (95% CI: - 0.21 to - 0.12), which did not cross the predefined noninferiority margin of - 0.5. Furthermore, LDCT showed significantly superior quantitative results of liver lesion contrast to noise ratio (p < 0.05). However, although LDCT scored higher than the average score in qualitative image quality assessments, they were significantly lower than those of SDCT (p < 0.05). Figure-of-merit for lesion detection was 0.859 for LDCT and 0.878 for SDCT, showing noninferiority (difference: - 0.019, 95% CI: - 0.058 to 0.021).

Conclusion: LDCT using DLD with 67% radiation dose reduction showed non-inferior overall image quality and lesion detectability, compared to SDCT.

Key points: • Low-dose liver CT using deep learning denoising (DLD), at 67% dose reduction, provided non-inferior overall image quality compared to standard-dose CT using model-based iterative reconstruction (MBIR). • Low-dose CT using DLD showed significantly less noise and higher CNR lesion to liver than standard-dose CT using MBIR and demonstrated at least average image quality score among all readers, albeit with lower scores than standard-dose CT using MBIR. • Low-dose liver CT showed noninferior detectability for malignant and pre-malignant liver lesions, compared to standard-dose CT.

Keywords: Deep learning; Multidetector computed tomography; Radiation dosage.

MeSH terms

  • Algorithms
  • Deep Learning*
  • Humans
  • Liver Neoplasms* / diagnostic imaging
  • Radiation Dosage
  • Radiographic Image Interpretation, Computer-Assisted / methods
  • Retrospective Studies
  • Tomography, X-Ray Computed / methods