Quantitative Description of Intrinsically Disordered Proteins Using Single-Molecule FRET, NMR, and SAXS

J Am Chem Soc. 2021 Dec 8;143(48):20109-20121. doi: 10.1021/jacs.1c06264. Epub 2021 Nov 24.

Abstract

Studying the conformational landscape of intrinsically disordered and partially folded proteins is challenging and only accessible to a few solution state techniques, such as nuclear magnetic resonance (NMR), small-angle scattering techniques, and single-molecule Förster resonance energy transfer (smFRET). While each of the techniques is sensitive to different properties of the disordered chain, such as local structural propensities, overall dimension, or intermediate- and long-range contacts, conformational ensembles describing intrinsically disordered proteins (IDPs) accurately should ideally respect all of these properties. Here we develop an integrated approach using a large set of FRET efficiencies and fluorescence lifetimes, NMR chemical shifts, and paramagnetic relaxation enhancements (PREs), as well as small-angle X-ray scattering (SAXS) to derive quantitative conformational ensembles in agreement with all parameters. Our approach is tested using simulated data (five sets of PREs and 15 FRET efficiencies) and validated experimentally on the example of the disordered domain of measles virus phosphoprotein, providing new insights into the conformational landscape of this viral protein that comprises transient structural elements and is more compact than an unfolded chain throughout its length. Rigorous cross-validation using FRET efficiencies, fluorescence lifetimes, and SAXS demonstrates the predictive nature of the calculated conformational ensembles and underlines the potential of this strategy in integrative dynamic structural biology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Fluorescence Resonance Energy Transfer
  • Intrinsically Disordered Proteins / chemistry*
  • Nuclear Magnetic Resonance, Biomolecular
  • Protein Conformation
  • Scattering, Small Angle
  • X-Ray Diffraction

Substances

  • Intrinsically Disordered Proteins