The effect and attributable risk of daily temperature on category C infectious diarrhea in Guangdong Province, China

Environ Sci Pollut Res Int. 2022 Apr;29(16):23963-23974. doi: 10.1007/s11356-021-17132-y. Epub 2021 Nov 24.

Abstract

Previous studies have explored the effect between ambient temperature and infectious diarrhea (ID) mostly using relative risk, which provides limited information in practical applications. Few studies have focused on the disease burden of ID caused by temperature, especially for different subgroups and cities in a multi-city setting. This study aims to estimate the effects and attributable risks of temperature on category C ID and explore potential modifiers among various cities in Guangdong. First, distributed lag non-linear models (DLNMs) were used to explore city-specific associations between daily mean temperature and category C ID from 2014 to 2016 in Guangdong and pooled by applying multivariate meta-analysis. Then, multivariate meta-regression was implemented to analyze the potential heterogeneity among various cities. Finally, we assessed the attributable burden of category C ID due to temperature, low (below the 5th percentile of temperature) and high temperature (above the 95th percentile of temperature) for each city and subgroup population. Compared with the 50th percentile of daily mean temperature, adverse effects on category C ID were found when the temperature was lower than 12.27 ℃ in Guangdong Province. Some city-specific factors (longitude, urbanization rate, population density, disposable income per capita, and the number of medical technicians and beds per thousand persons) could modify the relationship of temperature-category C ID. During the study period, there were 60,505 category C ID cases (17.14% of total cases) attributable to the exposure of temperature, with the attributable fraction (AF) of low temperature (4.23%, 95% empirical confidence interval (eCI): 1.79-5.71%) higher than high temperature (1.34%, 95% eCI: 0.86-1.64%). Males, people under 5 years, and workers appeared to be more vulnerable to temperature, with AFs of 29.40%, 19.25%, and 21.49%, respectively. The AF varied substantially at the city level, with the largest AF of low temperature occurring in Shaoguan (9.58%, 95% eCI: 8.36-10.09%), and that of high temperature occurring in Shenzhen (3.16%, 95% eCI: 2.70-3.51%). Low temperature was an important risk factor for category C ID in Guangdong Province, China. The exposure-response relationship could be modified by city-specific characteristics. Considering the whole population, the attributable risk of low temperature was much higher than that of high temperature, and males, people under 5 years, and workers were vulnerable populations.

Keywords: Attributable risk; Distributed lag non-linear model; Infectious diarrhea; Subgroup; Temperature.

Publication types

  • Meta-Analysis

MeSH terms

  • China / epidemiology
  • Cities / epidemiology
  • Cold Temperature*
  • Diarrhea / epidemiology
  • Hot Temperature*
  • Humans
  • Male
  • Risk Factors
  • Temperature