Sensing Shallow Structure and Traffic Noise with Fiber-optic Internet Cables in an Urban Area

Surv Geophys. 2021;42(6):1401-1423. doi: 10.1007/s10712-021-09678-w. Epub 2021 Nov 19.

Abstract

Abstract: Distributed acoustic sensing (DAS) is a novel seismic observation system developed in recent years that can realize ultrahigh density observations and has attracted extensive attention in the field of seismology. DAS uses fiber-optic cables as sensing units, which are easy to incorporate with urban telecommunication fiber-optic cables for seismological observations. Compared with seismometers, DAS has the advantages of being rapidly deployed and recyclable, being able to acquire dense observations at low cost, and convenient data collection. In this study, a 5.2 km long telecom fiber-optic internet cable was utilized as a DAS array in an urban area to record ambient noise, and the noise cross-correlation function (NCF) was calculated. There are two different distribution types of ambient noise sources along the cable, regular along-road trucks (Taihe Road) and complex ambient noise, including human activities and traffic sources along and across the Jinniu road. In the first case, we constructed a 2D S-wave velocity model down to 100 m depth and a low-velocity zone was revealed. The S-wave model well explained the traffic signal along the Taihe road and the low-velocity zone is also consistent with the results obtained from co-located geophone arrays. In the second case, due to the complexity of the traffic noise distribution, empirical Green's functions were barely achieved. Therefore, we performed a synthetic test obtaining different NCFs with different source distributions, and two specific cases that dominate the NCF results were matched. Finally, we obtained the traffic noise distribution along the road, which is consistent with the power spectra density of the ambient noise. In conclusion, by combining DAS and urban fiber-optic internet cables with urban traffic noise, we can effectively reveal the traffic activities and image shallow structures with high resolution, which could offer a reference for urban construction and disaster prevention.

Article highlights: DAS turns the urban fiber-optic internet cables into ultra-dense permanent seismic observation arraysWe revealed a high-resolution shallow structure using urban fiber-optic internet cablesWe obtained the distribution of traffic activities along the road.

Keywords: Ambient noise source distribution; Ambient noise tomography; Distributed acoustic sensing; Urban area.

Publication types

  • Review