Closo- or Nido-Carborane Diphosphane as Responsible for Strong Thermochromism or Time Activated Delayed Fluorescence (TADF) in [Cu(N^N)(P^P)]0/

Inorg Chem. 2021 Dec 6;60(23):18521-18528. doi: 10.1021/acs.inorgchem.1c03092. Epub 2021 Nov 23.

Abstract

Ortho-closo or ortho-nido-carborane-diphosphanes have been selected to prepare the heteroleptic cationic or neutral [Cu(N^N){(PPh2)2C2B10H10}]PF6 (1) and [Cu(N^N){(PPh2)2C2B9H10}] (2) [N^N = 2-(4-thiazolyl)benzimidazole], respectively. Complexes 1 and 2 display very different emissive behavior. Neutral complex 2 exhibits TADF (time activated delayed fluorescence) which has been studied both as powder and PMMA composite with similar ΔE(S1 - T1), τ(T1), and τ(S1) in both phases. Cationic complex 1 displays a much lower quantum yield than 2 and does not show TADF, but it exhibits a significant thermochromic luminescence, and its emission is very dependent on the medium. Theoretical studies show that metal-ligand (M-diphosphane) to ligand (L', diimine) transitions, MLL'CT, are responsible of the transitions which originate the emissive properties, but with very different contribution of the copper center, carborane cluster, and diphosphane phenyl rings for 1 and 2.