A novel biguanide (IM1761065) inhibits bioenergetics of glioblastoma tumorspheres

J Neurooncol. 2022 Jan;156(1):139-151. doi: 10.1007/s11060-021-03903-7. Epub 2021 Nov 22.

Abstract

Purpose: Glioblastoma (GBM) is a rapidly growing tumor in the central nervous system with altered metabolism. Depleting the bioenergetics of tumors with biguanides have been suggested as an effective therapeutic approach for treating GBMs. The purpose of this study was to determine the effects of IM1761065, a novel biguanide with improved pharmacokinetics, on GBM-tumorspheres (TSs).

Methods: The biological activities of IM1761065 on GBM-TSs, including their effects on viability, ATP levels, cell cycle, stemness, invasive properties, and transcriptomes were examined. The in vivo efficacy of IM1761065 was tested in a mouse orthotopic xenograft model.

Results: IM1761065 decreased the viability and ATP levels of GBM-TSs in a dose-dependent manner, and reduced basal and spare respiratory capacity in patient-derived GBM-TS, as measured by the oxygen consumption rate. Sphere formation, expression of stemness-related proteins, and invasive capacity of GBM-TSs were also significantly suppressed by IM1761065. A gene-ontology comparison of IM1761065-treated groups showed that the expression levels of stemness-related, epithelial mesenchymal transition-related, and mitochondrial complex I genes were also significantly downregulated by IM1761065. An orthotopic xenograft mouse model showed decreased bioluminescence in IM1761065-treated cell-injected mice at 5 weeks. IM1761065-treated group showed longer survival than the control group (P = 0.0289, log-rank test).

Conclusion: IM1761065 is a potent inhibitor of oxidative phosphorylation. The inhibitory effect of IM1761065 on the bioenergetics of GBM-TS suggests that this novel compound could be used as a new drug for the treatment of GBM.

Keywords: Biguanide; Bioenergetics; Glioblastoma; IM1761065; Tumorsphere.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Biguanides* / pharmacology
  • Brain Neoplasms* / drug therapy
  • Brain Neoplasms* / metabolism
  • Brain Neoplasms* / pathology
  • Cell Line, Tumor
  • Energy Metabolism* / drug effects
  • Glioblastoma* / drug therapy
  • Glioblastoma* / metabolism
  • Glioblastoma* / pathology
  • Humans
  • Mice
  • Xenograft Model Antitumor Assays

Substances

  • Biguanides
  • Adenosine Triphosphate