Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors

J Colloid Interface Sci. 2022 Mar:609:503-512. doi: 10.1016/j.jcis.2021.11.055. Epub 2021 Nov 15.

Abstract

The exploitation of hybrid supercapacitors with excellent electrochemical properties is of great significance for energy storage systems. Herein, a three-dimensional hierarchical flower-like architecture of nickel phosphide (Ni2P) decorated with nitrogen-doped carbon quantum dots (N-CQDs) and cobalt oxide (Co3O4) is constructed by an effective two-step hydrothermal strategy followed by in situ phosphorization process. Introducing N-CQDs with superior electrochemical characteristics can not only induce the formation of N-CQDs deposited nickel hydroxide (Ni(OH)2) flower-like architecture but also significantly enhance the electrochemical features of Ni(OH)2 nanosheets. After combination with Co3O4 nanoparticles and phosphorization treatment, an advanced cathode of Ni2P/Co3O4/N-CQDs with enriched surface phosphate ions is obtained, which possesses an ultra-high capacity of 1044 C g-1 (2088 F g-1) at 1 A g-1 with a splendid rate capacity of 876 C g-1 (1752 F g-1) at 20 A g-1. Moreover, a device assembled by Ni2P/Co3O4/N-CQDs hierarchical flower-like architecture and p-phenylenediamine functionalized reduced graphene oxide (PPD/rGO) nanosheets depicts a commendable energy density of 53.5 Wh kg-1 at 772.9 W kg-1. This work provides a novel hierarchical multi-component electrode material with decent electrochemical capacities for hybrid supercapacitors, which has a broad prospect in energy storage devices.

Keywords: Carbon quantum dots; Cobalt oxide; Flower-like architecture; Hybrid supercapacitor; Nickel phosphide.