Analysis of AM-to-PM conversion in MUTC photodiodes based on an equivalent circuit model

Opt Express. 2021 Oct 11;29(21):33582-33591. doi: 10.1364/OE.441677.

Abstract

High-speed, high power-handling photodiodes with sufficiently low amplitude-to-phase (AM-to-PM) conversion coefficients are critical components in the systems that generate ultra-stable microwave signals. This paper reports the AM-to-PM conversion in modified uni-traveling carrier photodiodes (MUTC-PDs) with 20 µm and 40 µm diameters. The contributions of AM-to-PM conversions from the carrier transit-time and impedance were quantified systematically based on a photocurrent-dependent nonlinear equivalent circuit model. It is found that the AM-to-PM conversion in 40 µm PD is dominated by the nonlinear impedance, while for 20 µm PD, the transit-time impacts the AM-to-PM conversion more significantly. These results imply that, for large PDs, the nonlinearity of the PDs' photocurrent-dependent impedance is the critical reason causing AM-to-PM conversion.