Assessment of Activity and Resistance Mechanisms to Cefepime in Combination with the Novel β-Lactamase Inhibitors Zidebactam, Taniborbactam, and Enmetazobactam against a Multicenter Collection of Carbapenemase-Producing Enterobacterales

Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0167621. doi: 10.1128/AAC.01676-21. Epub 2021 Nov 22.

Abstract

The global distribution of carbapenemases such as KPC, OXA-48, and metallo-β-lactamases (MBLs) gives cause for concern, as these enzymes are not inhibited by classical β-lactamase inhibitors (BLIs). The current development of new inhibitors is one of the most promising highlights for the treatment of multidrug-resistant bacteria. The activity of cefepime in combination with the novel BLIs zidebactam, taniborbactam, and enmetazobactam was studied in a collection of 400 carbapenemase-producing Enterobacterales (CPE). The genomes were fully sequenced and potential mechanisms of resistance to cefepime/BLI combinations were characterized. Cefepime resistance in the whole set of isolates was 79.5% (MIC50/90 64/≥128mg/L). The cefepime/zidebactam and cefepime/taniborbactam combinations showed the highest activity (MIC50/90 ≤0.5/1 and ≤0.5/2 mg/L, respectively). Cefepime/zidebactam displayed high activity, regardless of the carbapenemase or extended-spectrum β-lactamase (ESBL) considered (99% of isolates displayed MIC ≤2 mg/L). Cefepime/taniborbactam displayed excellent activity against OXA-48- and KPC-producing Enterobacterales and lower activity against MBL-producing isolates (four strains yielded MICs ≥16 mg/L: 2 NDM producers with an insertion in PBP3, one VIM-1 producer with nonfunctional OmpK35, and one IMP-8 producer). Cefepime/enmetazobactam displayed the lowest activity (MIC50/90 1/≥128 mg/L), with MICs ≥16 mg/L for 49 MBL producers, 40 OXA-48 producers (13 with amino acid changes in OmpK35/36, 4 in PBPs and 11 in RamR) and 25 KPC producers (most with an insertion in OmpK36). These results confirm the therapeutic potential of the new β-lactamase inhibitors, shedding light on the activity of cefepime and BLIs against CPE and resistance mechanisms. The cefepime/zidebactam and cefepime/taniborbactam combinations are particularly highlighted as promising alternatives to penicillin-based inhibitors for the treatment of CPE.

Keywords: antimicrobial resistance; carbapenemase-producing Enterobacterales; cefepime; enmetazobactam; restoring antimicrobial activity; restoring antimicrobial efficacy; taniborbactam; zidebactam; β-lactamase inhibitors.

Publication types

  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents* / pharmacology
  • Anti-Bacterial Agents* / therapeutic use
  • Azabicyclo Compounds / pharmacology
  • Bacterial Proteins
  • Borinic Acids
  • Carboxylic Acids
  • Cefepime / pharmacology
  • Cyclooctanes
  • Microbial Sensitivity Tests
  • Penicillins
  • Piperidines
  • Triazoles
  • beta-Lactamase Inhibitors* / pharmacology
  • beta-Lactamase Inhibitors* / therapeutic use
  • beta-Lactamases / genetics
  • beta-Lactamases / metabolism

Substances

  • Anti-Bacterial Agents
  • Azabicyclo Compounds
  • Bacterial Proteins
  • Borinic Acids
  • Carboxylic Acids
  • Cyclooctanes
  • Penicillins
  • Piperidines
  • Triazoles
  • beta-Lactamase Inhibitors
  • zidebactam
  • Cefepime
  • enmetazobactam
  • taniborbactam
  • beta-Lactamases
  • carbapenemase